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The parameters of stationary forced nonlinear vibrations are determined within 

the framework of correlation theory for shells considered as a system with one 

degree of freedom and subjected to a transverse pressure which is random in time. 

The generalized force is described as a stationary normal process with a rational 

fraction spectral density. 

The stability of the solutions found is verified by the perturbed motion equa- 
tion in a linear approximation. The system is first reduced to a Markov type by 

extension of the phase space. Then the Liapunov theorem on stability in a linear 

approximation is applied to the set of first and second order moment functions. 

The final stage in the problem is executed by numerical methods. 

It is disclosed that there are unstable solutions in some domain of the parame- 
ter space. Jump-like transitions from some stable states to others are observed 

for systems with comparatively large nonlinearity. 
Characteristic kinds of deterministic loadings have been investigated in [ l- 

41. For essentially nonlinear systems the curves of the states have sections cor- 
responding to unstable motions. 

Stationary forced vibrations of shells under random loads have been examined 

in a number of papers [S-7]. Investigations conducted within the framework of 
the correlation approximation often yield ambiguous solutions and the question of 
what motions are realized, remains open. 

The main purpose herein is to extract those of the solutions which correspond 
to the unstable vibrations, and thereby determine the actual shell behavior more 
accurately. 
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1. The behavior of a system with one degree of freedom in the nonlinear dynamics 

of elastic plates and shells is often described by a differential equation of the following 
kind [l]: 

y” + 2~y’ + y - ay2 + fly3 = q 

Here y (z) is the generalized coordinate, E is the damping coefficient, a, p are con- 

stants, and q (T) is a generalized force. Differentiation is performed with respect to the 

dimensionless tfme ‘c = o,t. where on is the circular frequency of small natural vibra- 

tions and t is the time. 

Let us find the mathematical expectation m,and the variance oy2 of the output pro- 

cess if q (T) is a stationary normal process with the mathematical expectation m4, vari- 
ance oq2 and spectral density (El is a positive nonrandom constant) 

(1.2) 

We use the method of spectral representations [B] in combination with the “quasi- 

Gauss” hypothesis [9] which assumes the same relationships for the moment functionsof 
the output process as for the normal process. Let us introduce the Fourier-Stieltjes ex- 

pansions 

y (r) = m, + y Y (CL)) +%II 0.3) 
-co 

4 (r) = m, + _I Q (0) eiordw 

where the spectra V (0) and Q (0) possess the stochastic orthogonality property 

(Y (o)Y* (a’)) = s, ho)6 (0 - 0’) 

(Q (w)Q* (co’)) = S, (co)6 to - o’) 

Here and henceforth, the angular brackets denote the operation of taking the average over 

the set of realizations, the asterisks denote the passage to the complex-conjugate. 6 (0) 

is the Dirac delta function, and S, (w) (is the spectral density of the generalized coor- 
dinate. Substituting (1.3) into (1. l), we obtain an expression of the type 

f W, Q, my, m,, . ..) = 0 (1.4) 

We take the average of this latter taking into account that the process y (z) is quasi- 
Gaussian and stationary, and we arrive at the dependence 

mY - am,2 -t $rnt + (3pm, - a)a,2 - mp = 0 (1.5) 

Applying the convolution operation for random spectra [lo] to (1.4), we write 

[(to;)” + 2e (io) + 1 - 2am, + 3/h,‘f] Y (0) + (1.6) 

m, - amu + Pm*” - mq) 6 (4 + 

(3bh - 4 f Y(N Y(a-- WI)& + 
-00 

@ 3 5 Y(o,)Y(o,)Y(o-q-r~_@o,do,-Q((o)=O 
-00 --Q) 



Let us examine (1.6) and its complex-conjugate equation. Multiplying their left sides 
by Y* (w’) and Q (w’) , respectively, and averaging the results we obtain 

L, (WS, (0) - S,, (0) -= 0, L, (--io)S,, (0) -s, (w) = 0 (1.7) 

L, (io) = (io)’ + 2E (io) + g, g = 1 -km, + 38 hi” t Q2) 

Here S,, (w) is the mutual spectral density of the processes q (T) and Y (r). Taking 
into account (1.2), we have from the system (1.7) 

&W = G$ L, (to) :, (_ iw) (1.8) 

L (io) = (io)~ + I” (i&l)2 + Y (io) + ge 
p =2E +e, v = g + 288 

Integrating (1.8) with respect to 61 we obtain the second relation between m y and (~~2 

2ao,% (/JO t g) - pq = 0 (1.9) 

Equations (1.5) and (1.9) form a nonlinear algebraic system in the unknowns 11) y and a va, 

which contains high degree terms ; explicit expressions cannot successfully be written 

down for them. An analysis of the results by using a digital computer disclosed that the 

solution is multivalued for certain relationships between the system parameters. It is 

natural to assume that some of them correspond to unstable motions: the remainder of 
the paper is given over to determining them. 

8, Let us form the perturbed motion equation in a linear approximation 

.T” {- 2F.X’ i- (y -i- &.I() i 3pJ,?).r = 0 (2.1) 

y := l--2aq, _I- :3prn,y 5 mm 2 (3py7, - a) 

Here J: (T) is the variation of the generalized coordinate which has stochastic meaning; 
the random process y (7) is represented as the sum of the mathematical expectation nd,, 

and the centralized component YO (rf: Y(T) :=- U) il $- y. (T). 
The expression (2.1) is the stochastic analog of the Mathieu-Hill equations in which 

the stationary random process yO (z) with the spectral density (1.8) plays the part ofthe 
excitation function or the external parametric effect. In this case the problem under 

consideration has much in common with the parametric resonances in stochastic systems 

PI l 
The stochastic stability will be identified with Liapunov stability of the set of mathe- 

matical expectations and the second order moment functions for the components of a 
Markov process. In order for the behavior of the system to be considered a Markov pro- 
cess,it should be described by first order differential equations and the effect should be 
delta-correlated, The expression (2.1) does not satisfy these conditions, but the pertur- 
bed motion process can be reduced to Markov type by the introduction of a sufficiently 
broad set of “coordinates”. 

The second condition can be satisfied by considering Y, (T) as the result of the passage 
of white noise z (z) with intensity s =: Za,%l through a filter 

*.a 
YO 4- l?z/,,” J-- YY{,’ + $$llJo = ” (2.2 

The first condition is satisfied if we go from (2.1) and (2.2) to the following system 
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of first order differential equations 

Xl 
‘=J: 

27 52 
*_ 

- -2&X2 - h + 5% t 3BG2)X, (2.3) 

23 
l - 

- x49 x4' = 55, 55' = -px5 - YX4 - gex, -j- 2 

We then have the vector Markov process x (7) with the components 

Xl = x, Xs = x’, 5s = y*, x* = y()‘, sYg = yO” 

Furthermore, the stochastic stability is verified by the deterministic linearized system 

m’=AUl (2.4) 

m = { 17Elr nt2,7n11, lf212, 7%3, %dr m15, 17222, m237 m241 m25) 

where A is a matrix of constant coefficients, m (r) is a vector of first and second order 

moment functions with identical components , aetermined as a result of the following 
averagings : 

mi (T) = (Xi (T)), mij (T) = (Xi (T) Xj (T)> (2.5) 

i = 1, 2; j = 1, 2, . ..5 

The remaining moment functions refer just to the stationary process y, (z); hence 

they take no part in the definition of stability. Let us write those down which are needed 

for the subsequent computations 

ns =mp=m6=m31=0, m33 = GYz 

a% 
mss =P @-PV 

A part of them is calculated by using (1.8). Using (2.3), (2.5) and the commutativity 

of the differentiation and averaging operations, all the equations in the system (2.4) can 
be formed 

Rl.i* = <Xi’)7 mij ’ = (Xi’Xj;i> + (Xix:) (2.6) 

i = 1, 2; j =1, 2, . . . 5 

The third and fourth order moment functions in the right sides of (2.6) are eliminated 

from the subsequent analysis by using the quasi-Gaussian hypothesis. After discarding 
the nonlinear terms. the matrix A becomes 

0100000000 

o-go0 0 0 0 

2 0000 0 0 
0 -g---IT 0 0 0 1 0 0 

0000010010 
0000001001 
0 0 0 0 -ge--v-p 0 0 0 

0 -2g 0 0 0 -4e 0 0 
-gg,o 0 0 -2& 1 

0 0 0 0 o-go 0 0 - 2s 
0 0 0 E, o-go-ge-v 

0 

0 
0 
0 
0 
0 
I 
0 
0 
1 

&---II. 
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The stability analysis henceforth reduces to seeking the roots of the characteristic 
equation 

det (A - hE) = 0 

where A. is the characteristic exponent, and E is the unit matrix. Because of the high 

order of the matrix A ,, the derivation of analytical expressions is difficult. The results 

obtained were analyzed by numerical methods on a digital computer. 

9. Two cases of non~~eari~ coefficients: (1) a = 0.652, fi = 0.155 (Figs. 1 and 2) 
and (2) a = 0.460, f$ = 0.055 (Figs. 3 and 4) are considered for the following fixed sys- 

tem parameters: 8 = 0.02, F = 0.01 and bq I mq = 0.4 , The second case corresponds 

to a shell with one unstable and two stable equilibrium positions under static loading. 

Fig. 1 Fig. d 

Fig. 3 Fig. 4 

The graphs of mq - my (Figs. 1 and 3) and mQ - 6y (Figs. 2 and 4) are initially con- 
structed by using (1.5f and (1.9). Curves of the static deflections q - y are superposed 
in Figs, 1 and 3 by a fine line for comparison. Then a su~ciently large quantity of 
points confirmed the stability by means of (2.7). In all cases the roots obtained satisfy 
the conditions of the Liapunov theorem on stability in a first approximation. No insta- 
bility is detected for the first shell, while for the second one the descending parts of the 
curves marked by dashes correspond to the unstable motions. 
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In the first case, the mathematical expectation and the standard deviation vary smooth- 
ly as mQ rises and (or) drops. Let us trace the shell behavior as the mean load grows from 

zero. The initial section 0 - 1, corresponding to comparatively low values of nzqr my, syis 

supplanted by a section of rapid growth of the mathematical expectation and the stand- 

ard deviation (1 - 2) when the shell reaches the least stiffness, Further growth in the load 

causes a drop in Go and retardation of the increment in m,, (2 - 3). The values of my 

and Go grow monotonely after the point 3. As mq decreases, we have a change of s&es 

and the reverse sequence. For negative mq the values of my and 5* are much smaller 

because of the high shell stiffness. 

The behavior of the system is more complex in the second case. In the initial loading 

period, vibrations primarily around the first stable equilibrium position (the section 0 - 1) 
with small values of the mathematical expectation and standard deviation are observed 

here. At the point 1 this state is replaced by a jump by vibrations enclosing both stable 

equilibrium positions (the section 8 - 2 - 3). The values of mv and by rise sharply. A 

further rise in rnq results in the jump 3 - 4 denoting the passage to vibrations primarily 

around the snapping state ; the standard deviation drops strongly because of the growing 
stiffness. The decrease in mq on the sections 3 - 2 - 8 results in the inverse replacement 

of vibrations enclosing the stable equilibrium positions by vibrations around the first sta- 

ble equilibrium position (the jump 8 - 9) but this phenomenon occurs for considerably 

lower values of mq. An analogous picture is observed as the load decreases on the sec- 

tion 5 - 4 - 6. Here the vibrations around the snapping state are replaced by the jump 

6 - 7 by vibrations around the first stable position. 

The passages from some stable stationary modes to others noted by arrows in Figs. 3 

and 4 are most probable for sufficiently slow changes in mq. Other variations are not 
excluded because of the random nature of the load, but they will evidently be less pro- 

bable. 
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Theory of discontinuities is used to investigate the conditions at a shock wave in 

an elastoplastic medium with a nonassociative flow rule. A system of relations 

is proposed at the shock wave which represents, in general, the nonholonomic con- 

ditions which become integrable only when the problem of motion of the medium 

behind the wavefront is solved. In the present case, the Hugoniot adiabate inde- 
pendent of the flow behind the wavefront is absent. 

Equations for determining the plastic deformations of materials are generally 
written in terms of increments and must be integrated when solving specific prob- 

lems. If the problems are further complicated by the presence of surfaces of 

strong discontinuities. then the integration can only be performed when the usual 

equilibrium relations are supplemented by additional boundary conditions at 

these surfaces. In the present paper we show that, in the absence of the displace- 

ment discontinuities. such a condition must be given in the form of the condition 

of continuity of displacements. The analysis is carried out with the finite char- 
acter of the deformations taken into account. 

The defining incremental constraints are nonholonomic [ 11 and cannot, in ge- 

neral, be integrated independently. In such cases the relations connecting the 
parameters of the system at the strong discontinuities cannot be reduced to a 

system of finite, closed relations. Thus the Hugoniot adiabate will not, in general, 

exist in dilating plastic materials [ 21 irrespective of the motion outside the strong 

discontinuity. 
Some authors [3- 51 construct additional relations at the strong discontinuity 

(they can be used to obtain finite relations across the shock) by analyzing the 
inner structure of the discontinuity, with the help of the same defining equations 
sometimes supplemented by viscosity terms and a hypothetical loading route. 
The specific character of the conditions at the strong discontinuity obtained by 
the passage to the limit from the continuous structure, was noted by Sedovin fl]. 

In accordance with the approach developed in this paper, we must consider the 
structure of the shock transition in order to estimate the changes in the initial 
state (reference state) of the material point passing across the shock front. For 
this reason the system of equations for the structure must be chosen, in order to be 
adequate, from the continuous generalized models. 


